Solutions to Physics 226: Problem Set #1

1. Relativistic expressions relevant for accelerator performance

(a)

()

The center-of-mass energy for two particles with masses m; and ms
1s

s =B, =P+)" = mi+mj+ 28 E — 2pi - p)
where the P, are the particle 4-momenta and p;’s are the particle

3-momenta.

For the center-of-mass case, p» = —p; and p; = \/ E? — m?. Thus

2

m m3
s =m; +mj+ 2E, By (1+J(1— —)(1 - §)>
25 Ly

If the masses are small compared to their energies

Es En
s=4F By + mi(1 — E) +m3(1 — E)

Neglecting masses completely
s = 4FFEs
E., = \JAE F,
In the lab frame, (M, at rest)
s = (B +my)?—pi
= m: +2muE) +mj

If the masses are small

S = 2m2E1

i. Neglecting the electron and positron masses, the boost of the

center-of-mass is given by

Dot En— En

BiEtotiEl"i‘Eé

ii.

111.

where F; and F, are the lab energies of the electron and positron.
Using
4E1E2 = M%
and
Ptot Ey — E
By = =
Ecm MT

we can solve to get

My

B = 2(57%/5272“)%96'9,\/
My

B = 2T <_m+,/52y2+1>z3.1 GeV

The momentum of the B in the center-of-mass frame is very close
to zero. So, the momentum in the lab frame is set by the boost
By = 0.065 in the beam direction. The mean decay distance is
therefore

< L >= Bryery = 260pm
In the center-of-mass of the B meson, both pions have equal and
opposite momentum and E = mpg/2. The angle in the lab will

depend on the decay angle with respect to the beamline

P = yp(p? + BpE) ~ ypE(Bcosh + 1)

where we have ignored the pion mass relative to its momentum.

The maximum boost is when the 7 is moving in the direction of

the B 8 8
ﬂmaaz - g = 0.57
1 — ByBB
The minimum boost is in the opposite direction
Bunin = Sr=Ps gy
1+ ByfBB
The extreme values of the momenta are:
pmaw - Tr;B ’Ymax(]- _|_ Bma‘z) ~ 50 GeV

2. Particle ID using a time-of-flight detector

(a)

For ultrarelativistic particles (mq, mo << p) the time of flight is
¢t (FE

v cpe
where E' is the energy and p is the momentum of the particle. Thus

for two particles with the same momentum and different masses

‘ (wpcv +(mie)? y/(pe)® + <m2c2>2)

pc pc

At:tl—tzzf
C

Taylor expanding \/(pc)2 + (mc?)? = pc\/l + (mc?)?/(pc)? = p(1 +

%(mC)Q/(pC)Q + ...) we find
_ ﬁ(m162)2 — (mayc?)?
At = 5 P

setting ¢ = 1 we get:

Ay = Lm)? = (mo)?
2 p?

A 90% confidence level separation corresponds to 1.64c for a two-
sided cut. However, since we are only cutting on one side of the
Gaussian, we should ask that 10% of the events be in one tail (so
20% in both tails). That corresponds to 1.28¢ from each peak, or

2.56 o between the peaks, as shown here:

0.8

0.6

0.4

0.2

U-l\llll\\‘\\llllllllll

K=
A

So we are looking for the momentum where the time difference At =

2.56 x 100ps which means:

L (i c?)? = (mac?)?
2c At

(pc)? =

(o) 1.40m (0.4942 — 0.1402)GeV?
C =
£ 6 x 105m/s 258 x 10-12s

p = 1.43GeV/c

(c) First, we find the separation in time of arrival of the 7 and K:

1.4 (0.494% — 0.140%)GeV?

A p—
=651 (15GeV/o)?

=2.33 x 10719 sec = 233 ps

Thus, if the mean time of arrival of the 7 is -233 ps, the mean time of
arrival of the K is 0 ps. In each case, the arrival time is Gaussianly
distributed with a o = 100 ps. If we call everything a K that arrives
after time T, then the purity of the sample is:

p(K) = _g dre = (1+233)2
Jrodt e 2 43 [27 dt e” 202
erfe(T/v/20)
((erfc((T/v/20) + 3(erfe((t + 233)/v/20)

We can solve for T" numerically (eg using Mathematica). The answer
is 150 ps. The efficiency of this cut is 0.79.

3. A Monte Carlo Model of Electromagnetic Showers

Here is the distribution for 1 GeV showers

E L L B B L B B B B IS S =
2 C &N 7
% 16— ° % —
o - e o =
° 14— * ° 3
) o ° . 7
o o]
IS 12— ° % =
< o o m
© 10 ° . -
S} c ° .]
g 81— ° °]
E e D =
zZ C L4 1;]
c 4 4 o]
\ z
2?’ -
Oxxlxxxlxxxlxxxlxxle

4 6 8 10 12 14 16 18 20 22

Number of Radiation Lengths

Here is the distribution for 10 GeV showers

40T T
120
100
80
60

40

Mean Number of Charged Particles

20

\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\L

N

P R R

L LI L L B

\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\ﬂ:

v e b ey

o
N

6 8

|
10 12 14 16 18 20 22

Number of Radiation Lengths

I did this problem using Root. Here is the code I used:

#include
#include
#include

#include

<iostream>
<vector>
"TRandom.h"
"TProfile.h"

using std::cout;
using std::endl;

using std::vector;

class aShowerParticle{
public:
double zBeg;
double zEnd;
double Einit;
int Charge;
aShowerParticle() {zBeg=0.0;zEnd=0.0;Einit=0.0; Charge=0;}
aShowerParticle(double beg,double end,double e, int q)
{zBeg=beg;zEnd=end;Einit=e; Charge=q;}
“aShowerParticle() {}
s

// Eincident is in GeV
void EMShower (int numEvt, double Eincident) {

// Here we declare all the physical constants
double Radlen=7.39/8.30; // gm/cm**2 /gm/cm**3 = cm

double dEdxGeVperCm = 1.229%8.30%1.0e-3; //MeV cm2/gm * gm/cm*3 *10-3 GeV/M

double length=22.4; //depth of the crystal cm

// Make a profile histogram to store the showers

TProfilex hProf = new TProfile("hprof",'"Mean number of charged particles vs

hProf->SetXTitle("Number of Radiation Lengths");
hProf->SetYTitle("Mean Number of Charged Particles");
double bincenter[100];
for(int bin=0;bin<100; bin++) {

bincenter[bin] = (0.5+bin)*length/100;

cout << "The requested number of events is: " << numEvt << endl;

// Instantiate the random number generator
TRandom* random = new TRandom;
vector<double> mydata;

double Zinteraction, Zstart;

// aShower is a collection of all the particles produced in a shower
// activeParticles is a collection of those still alive

// note; both these contain pointers to the same objects

// aShower owns the objects and will delete them

// failure to delete would cause a memory leak
vector<aShowerParticle*> aShower;

vector<aShowerParticle*> activeParticles;

for (int i=0; i<numEvt; i++) {
cout << " Event " << i << endl;
// Create our incident particle
aShowerParticle* part = new aShowerParticle(0.0,0.0,Eincident,1);
// and add it to the shower and the list of active paticles
activeParticles.push_back(part);
aShower.push_back(part) ;
vector<aShowerParticlex>::iterator iter;
// We’ll keep going until we run out of particles
while(activeParticles.size()>0) {
// Let’s start by looking at the first particle in the list
iter = activeParticles.begin();
// Electrons and photons assumed to have exponential distribution to th
// with argument of the exponential=Radlen
// Photons convert with exponential distribution
// with argument of the exponential=(9/7)Radlen
if ((xiter)->Charge!=0) {

Zinteraction = random->Exp(Radlen);

else {
Zinteraction = random->Exp(9.0*Radlen/7.0);
+

Zstart = (xiter)->zBeg+Zinteraction;

// For charged particles, check how much energy they loose to ionizatio
// to make sure that they don’t stop before the next interaction
if ((*iter)->Charge!=0 &&
Zinteraction*dEdxGeVperCm > (*iter)->Einit){
// The particle stops in the crystal. Kill it at the point it stops
(*iter)->zEnd = (*iter)->zBeg+((*iter)->Einit)/dEdxGeVperCm;
activeParticles.erase(iter);
+
else if(Zstart>=length) {
// The next interaction is after the end of the crystal: Terminate
(*iter)->zEnd=length;
activeParticles.erase(iter);
+
else {
// The next interaction is in the crystal: Replace the particle with
// its interaction products
(*iter)->zEnd=Zstart;
double Eeach;
int ql1,q92;
// photons produce e+e- pairs
if ((*iter)->Charge==0) {
Eeach=((xiter)->Einit)/2.0;
ql=1;
q2=-1;
+
// e"+ and e”- undergo brem. We will delete the original
// e"+ or e”- and replace it with a a new one plus a photon
else {
Eeach=((*iter)->Einit-dEdxGeVperCm*Zinteraction)/2.0;

ql=(*iter)->Charge;
q2=0;

activeParticles.erase(iter);
aShowerParticle* partl = new aShowerParticle(Zstart,0.0,Eeach,ql);
activeParticles.push_back(partl);
aShower.push_back(partl);
aShowerParticle* part2 = new aShowerParticle(Zstart,0.0,Eeach,q2);
activeParticles.push_back(part2);
aShower . push_back(part2) ;
} // end of test on whether particle interacts
} // No more particles to propagate
// Make histogram of number of particles here and then free the memory
int nCh=0;
int nChinBin[100];
for(int bin=0; bin<100; bin++) {nChinBin[bin]=0;}
for(iter=aShower.begin(); iter!=aShower.end(); iter++){
if ((xiter)->Charge!=0) {
nCh++;
for(int bin=0;bin<100;bin++) {
if (((*iter)->zBeg) < bincenter[bin] && ((*iter)->zEnd) > bincenter[

nChinBin[bin]++;

}
for(iter=aShower.begin(); iter!=aShower.end(); iter++){
delete *iter;
}
aShower.clear();
for(int bin=0; bin<100; bin++) {hProf->Fill(bincenter[bin] ,nChinBin[bin],1

} // end of loop over events

cout << " All events complete" << endl;

hProf->Draw() ;
//End of macro

10

