
Physics 226: Problem Set #1
Due in Class on Thurs Sept 8, 2011

Some of the problems below require numerical calculations (integrals, random

number generation, etc). You are free to use your favorite mathematical software

package and your favorite computer language to do the problems. My solutions

will use Root and C++. I’ve posted on our web page information about Root,

including an example of how to write a simple Monte Carlo program to generate

particle decays. You might find this example helpful in doing Problem 3 below.

Root is available on the Panic cluster. If you don’t have access to Root and

want to use it to do these problems, please let me know.

In doing these problems, you will need to know certain physical constants

(particle lifetimes, radiation lengths of specific materials, etc). You can find

everything you need on the Particle Data Group (PDG) web site:

http://www-pdg.lbl.gov/

Take some time to learn to navigate this site. We’ll be using it extensively.

1. Relativistic expressions relevant for accelerator performance

(a) Explicitly derive the expressions for the center-of-mass energy for the

collider and fixed target experiments not assuming that the masses

of the colliding particles are small.

(b) What approximations do you have to make to derive the simpler

formulae usually quoted:

Ecollider
cm =

√
4E1E2 and Efixed target

cm =
√

2mtargetEbeam

(c) The Babar experiment (which ran at SLAC until Spring 2008) and

the still-running Belle experiment at KEK in Japan study B mesons

produced in Υ(4s) decays through the process e+e− → Υ(4s)→ BB.

Both accelerators were designed to operate at a center-of-mass energy

of 10.56 GeV. Both accelerators are “asymmetric colliders,” where the
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energies of the e+ and e− beams are not the same. This asymmetry

means that the center-of-mass is boosted along the beam direction

and therefore the produced B mesons are moving, making it possible

to measure their lifetime by looking at the distance they travel before

decaying.

i. For a boost of βγ = 0.56 along the e+ direction of motion, de-

termine the required energies of the e+ and e−.

ii. Determine the average distance between the B production point

and its decay point in the LAB. (Note: You can find the value

of the B meson lifetime on the PDG website. The charged and

neutral B mesons have almost the same lifetime. Use the B0

lifetime for this problem. Also, note that in the center-of-mass

energy of the B-factories is very close to twice the B mass. You

may therefore make the approximation that the B mesons are

produced at rest in the center-of-mass.)

iii. For a two body decay B0 → π+π−, determine the range of the

possible LAB momenta of the two pions. Note: For this calcula-

tion, you may make the approximation that the pion is massless.

2. Particle ID using a time-of-flight detector

The CDF experiment had a time-of-flight (TOF) system. The purpose

of this detector was to distinguish π± from K±. The system had a time

resolution σt = 100 ps and was located 140 cm from the point where the

π and K were created.

(a) Let’s begin by deriving an expression for the difference in flight time

for two relativistic particles of masses m1 and m2 with the same

momentum p that travel a distance `. (Hint: start with the relativistic

expression β = p/E and Taylor expand the energy E for the case

where m� p).

(b) Assume that you have equal populations of π and K. Using the

expression you have derived, find the maximum momentum for which

you can identify a K at better than the 90% confidence level. (If you

are not familiar with the concept of a “confidence level” see the review
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of statistics in the PDG. Warning: this is a single-sided confidence

level.) You may assume all errors are Gaussianly distributed.

(c) Suppose a factor of 3 more pions than kaons are produced at a mo-

mentum of 1.5 GeV. What cut on time-of-flight must be applied in

order to produce a sample of candidate kaons with a purity P of 80%

(P ≡ nK/(nK + nπ))? What is the efficiency (ε = npassingK /ntotalK ) of

this cut for K at this momentum? Note, you will have to solve this

last part numerically. Feel free to use Mathematica or your favorite

mathematics package to do this.

3. A Monte Carlo Model of Electromagnetic Showers

In order to understand how their detectors respond, particle physicists

use complex simulations. These simulations take as their input Monte

Carlo generated events, propagate the particles in these events through

a model of the detector and simulate the response. The output of the

simulation is written in the same format as the real data and is used to

understand the experiment’s “acceptance” and resolution. Proper model-

ing of the detector response requires detailed understanding of the physics

of particle interactions with matter. Today, most experiments use a simu-

lation toolkit, called Geant4, to model this physics. In this problem, you

will write your own Monte Carlo simulation of electromagnetic showers

and use it to describe shower development in the CMS electromagnetic

calorimeter (ECAL). A description of the CMS ECAL can be found at:

http://cms.web.cern.ch/cms/Detector/ECAL/index.html

Write a Monte Carlo simulation that predicts the longitudinal development

of an electromagnetic shower in the CMS ECAL. The final “answer” should

be a plot that looks roughly like the black circles in Figure 32.20 of the

PDG Review of the Passage of Particles Through Matter, but where the

horizontal axis is the distance in cm from the front face of the calorimeter

and the vertical axis is the average number of charged particles crossing

a plane at that distance. To understand how the shower development

depends on energy, make this plot for E = 1 GeV and E = 10 GeV

electrons and compare the distance at which the maximum occurs. In

order to keep the statistical uncertainties small, generate 1000 events at
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each energy.

You will need to make a number of simplifying assumptions in your model:

• Describe the calorimeter as a uniform crystal of lead tungstate, 23

cm deep. We’ll assume electrons hit the front face of the crystal with

fixed energy E and normal to the surface.

• Real EM showers develop in 3-dimensions, but we will use a 1-dimensional

model and ignore the transverse spreading of the shower.

• Electrons lose energy by bremsstrahlung. The mean distance over

which a high energy electron loses all but 1/e of its energy is called

the radiation length X0. The bremsstrahlung spectrum of the emitted

photons is peaked at low photon energy. While the true bremsstrahlung

process is continuous, for this problem we will make the unrealistic

approximation that the energy loss is a discrete process that occurs

at random positions x along the electron trajecctory. To simplify the

calculation, we will also make the unrealistic assumption that when-

ever the bremsstahlung occurs the energy is divided equally between

the the outgoing electron and photon. Thus, the energy loss dE for

the electron in a distance dx follows the equation

dE

E/2
= − dx

X0/2

In other words, the probability of a discrete bremmstahlung occuring

in distance dx is assumed to be

dP ≡ dN

N
= − dx

X0

• When charged particles travel through matter, they lose energy via

ionization. The distribution of energy loss per unit distance is a Lan-

dau distribution, with a mean that depends on the particle’s velocity.

We will assume for this problem that the ionization energy loss per

cm is constant, with the value for lead tungstate taken from the PDG

Atomic and nuclear properties of materials. If a charged particle (e+

or e−) loses enough energy via ionization to stop in the crystal, then

it will just be absorbed in the material. (In the real world, charged
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particles have a Bragg peak in their energy loss as they stop. We will

ignore that effect here).

• Photons lose energy via compton scattering, photo-nuclear interac-

tions and pair production. We’ll assume for this problem that pair

production is the only process that matters and that the probability

of pair production occuring distance between x and x+ dx is

dP =
dx

9/7X0

We’ll will also unrealistically assume that the e+ and e− produced

always share the energy of the photon equally. You can make the

approximation that the electron is massless.

Note: if you are not familar with Monte Carlo methods, this problem

will be difficult. Please come to section and ask questions.
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