Review from Last Class: Classification of particle detectors

- **Charged Particles**
 - Momentum: Determine trajectory in B field
 - Mass: More difficult; Measurement of velocity and momentum
 - Energy: Deposited as particle stops.
 - Energy loss from ionization, bremsstrahlung

- **Strongly Interacting Particles (charged or neutral)**
 - Energy: Deposited where particle stops
 - Energy loss from nuclear interactions

- **Photons**
 - Energy: Pair production followed by ionization

- **Muons**
 - Momentum: As for other charged particles
 - No nuclear interactions
 - Can pass through lots of matter before stopping
 - Additional tracking detectors after calorimeter

- **Neutrinos**
 - Often observed by their absence: missing momentum
 - Weak interactions, eg $\nu_\mu N^Z \rightarrow \mu^- N^{Z+1}$ or $\nu_\mu N^Z \rightarrow \nu_\mu X$
Silicon Strip Detectors

- Strips etched onto silicon wafer
 - Typical size of wafer: 3cm × 6 cm
 - Typical strip pitch: 50-100 µm
- One amplifier per strip
 - Only hit strips sent to data acquisition system
Pixel Detectors: Same idea, more channels

- Instead of long strips, 2D rectangles
- Electronics mounted on top of each pixel
- Example: ATLAS pixel detector
 - 1744 modules
 - 80 million pixels
 - Pixel size: 50µm x 400µm
 - Resolution 10µm in bending plane
Track Reconstruction

- Charged particles traverse many layers of detectors
- Detectors often placed in magnetic field
 - Lorenz force $F = qv \times B$
 - $p \cos \lambda = 0.3BR$
 - p: momentum,
 - λ: wrt transverse direction
 - B: Mag field in tesla
 - R: Radius of curvature in m
- Hits along trajectory are “fit” to form a track
 - Deviation from straight line proportional to momentum
 - Direction of curvature gives sign of charge

\[
\frac{\sigma_{pT}}{pT} = \sqrt{\frac{720}{N + 4 qB L^2}} \frac{\sigma_x}{pT}
\]
Vertex Reconstruction

- Extrapolate tracks to common vertex point
 - Good position resolution required
 - First measurement should be close to beam line
 - Minimize amount of material

- Impact Parameter: Distance of closest approach to primary vertex
 - Sign defined to distinguish particles that decay in front of or behind primary vertex
 - Mean value depends on mass and lifetime of decaying particle
Cherenkov Radiation: Separating particle species

- Charged particle moving faster than light in medium produces radiation
- Wave-front is a cone of light with angle that depends on the index of refraction n of the medium
 \[\cos \theta = \frac{1}{n\beta} \]
- Two types of Cherenkov detector:
 - **Threshold:** Separates species
 - Same p, different mass \rightarrow different v
 - **Ring imaging:**
 - Measure θ to determine v
Examples of Cherenkov Detectors

AMS Detector (International Space Station)

Icecube Detector (South Pole)

Babar DIRC
Example of Tracker with Multiple Components
Calorimeters

- Calorimeters are blocks of matter that:
 - Degrade the energy of particles through their interactions with matter
 - Are instrumented to detect the ionization and de-excitation of excited states through conversion to electronic signals
 - Measure signal of a magnitude that depends on energy of incident particle
Radiation Length

• Definitions:
 ▶ Mean distance over which a high-energy electron loses all but $1/e$ of its energy due to bremsstrahlung
 ▶ $7/9$ of the mean free path for pair production from a high energy photon
 ▶ Units can be either cm or g/cm2 (use density to convert)

• From Particle Data Group review:

$$
\frac{1}{X_0} = 4\alpha r_e^2 \frac{N_A}{A} \left\{ Z^2 [L_{rad} - f(Z)] + Z L'_{rad} \right\}
$$

where for $A = 1$ g/mol, $4\alpha r_e^2 \frac{N_A}{A} = 716.408$ g/cm2; L and L' depend on the properties of the material

• A good approximation is

$$
\frac{1}{X_0} = Z(Z + 1) \frac{\rho \ln(287/Z^{0.3})}{A} \frac{1}{716 \text{ g/cm}^3}
$$
Longitudinal and Transverse Shower Development

- Cascade due to
 - Bremsstrahlung ($e \rightarrow e\gamma$)
 - Pair production ($\gamma \rightarrow e^+e^-$)

- This continues until electrons fall below critical energy E_c

- Transverse size set by Moliere radius

$$R_M = X_0 \left(21 \text{ MeV} / E_C \right)$$

- For lead $X_0 = 0.56 \text{ cm}$ and $R_M = 1.53 \text{ cm}$

$$\frac{dE}{dt} = E_0 b \frac{(bt)^{a-1} e^{-bt}}{\Gamma(a)}$$

where t is depth in radiation lengths
EM Calorimeters

- Total absorption calorimeter
 - Electrons and photons stop in calorimeter
 - Amount of scintillation light proportional incident energy
 - Blend of two materials: eg lead + crystal
 - Resolution typically $\propto 1/E^{1/4}$

- Sampling calorimeter
 - High Z material to induce shower: “absorber”
 - Another material to detect particles: “active material”
 - Alternating layers of absorber and active material
 - Resolution typically $\propto 1/E^{1/2}$ (more later)
 - Can be segmented longitudinally and/or transversely

- Absorber most often Pb for EM calorimeters ($Z = 82$)
Example of Crystal (Total Absorption) Calorimeter: CMS

- **PbWO₄** (lead-tungstate)
 - 22mm x 22mm x 230mm crystals in barrel
 - 75,848 crystals in total
 - 1% resolution at \(E = 30 \text{ GeV} \)
 - Total depth: \(25X_0 \)
Example of Sampling Calorimeter: ATLAS Barrel Calorimeter

- Accordion design
- Absorber: Pb
- Active material: liquid argon
 - Ionization electrons drift to sensors (Cu/kapton sheets)
 - Good transverse segmentation
- Resolution: 1.8% at 30 GeV
- 3 samples in depth
- Total depth: $22X_0$
Calorimeter energy resolution for sampling calorimeters

\[
\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c
\]

where

- a: “Stochastic term” (arises from fluctuations in shower)
- b: “noise term” (electronic noise, pileup)
- c: “constant term” (imperfections in calibration...)

Hadronic Showers

- Hadrons lose energy due to nuclear interactions in material
 - Characteristic length called “interaction length” λ
 - Depends on A rather than Z (as radiation length did)
- More complicated shower development than EM showers

Figure 12: Schematic of development of hadronic showers.
Example of Combined Calorimeter Package: CDF

- Sampling calorimeter with sandwich structure
- EM calorimeter in front; absorber is lead
- Hadronic calorimeter behind: absorber is steel
- Scintillator as active medium for both
- Projective “towers” that point to interaction region
Some comments on hadron calorimetry

- Nuclear interactions much messier than electromagnetic
 - Binding energies of nuclei in MeV range rather than the eV range of atomic processes
 - Energy of nuclear break-up not measured in calorimeter
 - Calorimeter response depends on material used for absorber
- Hadronic showers contain π^0 as well as π^\pm
 - $\pi^0 \rightarrow \gamma\gamma$ with $\tau = 8 \times 10^{-17}$s. (Decays before reaching detector)
 - π^\pm has $\tau = 2 \times 10^{-8}$s (Exits detector before decaying)
 - Decay products of π^0 only interact electromagnetically but π^\pm interact via strong force
 - Thus calorimeter responds differently to π^0 and π^\pm
 - Event-by-event fluctuations in charged-to-neutral ratio degrades response
- Hadron calorimeters typically have much worse energy resolution than EM calorimeters and do not have linear response at low energy deposition
 - σ_E/E typically 50-100%\sqrt{E}
Muon Detection

- Muon properties:
 - Muon mass more than 200 times that of electrons → Don’t lose energy as quickly from bremsstrahlung
 - Are leptons → Don’t feel strong interactions
- Energy loss dominantly from ionization → travel long distances in matter
- Detect using tracking chambers placed after lots of material
- Sometimes additional B field for a second momentum measurement
Neutrino Detection (I): via Missing Momentum

- Example of a $W^{-} \rightarrow e \bar{\nu}_e$ decay

Note: $m_W = 80$ GeV
Neutrino Detection (II): via weak interactions

- Charged current interactions
 \[\nu_\mu + N^Z \rightarrow \mu^- + X^{Z+1} \]
- Neutral current interactions (\(X\) are hadrons produced in breakup nucleus)
 \[\nu_\mu + N^Z \rightarrow \nu_\mu + X^Z \]
Accelerators: Introduction

• 1st accelerators not man-made
 ▶ Radioactive sources: α, β, γ
 ▶ Cosmic Rays

• Cosmics sources still used today
 ▶ ν from sun, or produced in atmosphere
 ▶ Dark matter??

• However:
 ▶ Can’t control energy or intensity
 ▶ Can’t turn them off
 ▶ Can’t select beam species

• Need for something more:
 Man-made accelerators
Components of an Accelerator

- **Beams**
 - Currents of charged particles that will be accelerated
 - Distributed in bunches (we’ll see why in a few slides)
 - Transported in ultr-high vacuum

- **Accelerating structures**
 - Use electric fields or RF waves to accelerate particles
 - New techniques (eg laser acceleration) under study

- **Magnets**
 - Guide beams into well defined path
 - Focus beams to small transverse area

- To optimize performance, components usually arranged in a series of separate accelerators, each feeding the next
The Most Basic Accelerator: Electron Gun

- Heated wire used to spit off electrons
- HV to generate E-field: $KE = e\Delta V$
- Same idea can be used to accelerate p or $+$ ions
 - Attach electrons to atoms to make negative ions
 - Accelerate the ions
 - Strip ions of electrons by passing through foil
 - Mass spectrometer to separate
- Largest possible energy ~ 20 MeV
 - Typical energy ~ 100 KeV (Van der Graaff)
 - Can we do better?
 - Use AC rather than DC fields
The First AC Accelerator: The Cyclotron

Square wave electric field accelerates charge at each gap crossing.

Magnetic field bends path of charged particle.
Observations about the Cyclotron

- Constant bending field B
 - Radius of curvature changes as particle accelerates
 - $p = eRB$
 - $t = 2\pi R/v = 2\pi R/(eRB/m) = 2\pi m/e$ if particle non-relativistic

- Large R needed to reach high energy if B limited
- As particle becomes relativistic, simple relationship between R and period no longer valid
- Solution
 - Change bending field as particle accelerates: Synchrotrons
A better alternative for accelerating structures

- Series of evacuated tubes with alternative tubes at opposite voltage
 - Inside tube, $E = 0$ so no acceleration
 - Between tubes \sim constant field
 - Set frequency so sign of E changes when particles in tube
 - Can get acceleration each time

- Must make tubes longer to compensate for increased velocity (until ultra-relativistic)

- Only particles with correct phase accelerated
 - Beam consists of bunches
A more realistic alternative: RF Structures

A voltage generator induces an electric field inside the rf cavity. Its voltage oscillates with a radio frequency of 1.3 Gigahertz or 1.3 billion times per second.

The electrons always feel a force in the forward direction.

An electron source injects particles into the cavity in phase with the variable voltage.

The electrons never feel a force in the backward direction.
Fitting the beam into RF buckets at the LHC

RF bucket

2.5 ns

<table>
<thead>
<tr>
<th>Energy</th>
<th>RMS bunch length</th>
<th>RMS energy spread</th>
</tr>
</thead>
<tbody>
<tr>
<td>450 GeV</td>
<td>11.2 cm</td>
<td>0.031%</td>
</tr>
<tr>
<td>7 TeV</td>
<td>7.6 cm</td>
<td>0.011%</td>
</tr>
</tbody>
</table>

R. Assmann
Bending the beam: Dipole magnets

• Pictures above show LHC dipole magnets
 ▶ Two bores since proton bunches travel in opposite directions
 ▶ 15 m long
 ▶ Superconducting magnets at temperature 1.9K
Focusing the beam: Quadrupoles

\[B_x = B'y \quad B_y = B'x \]
\[F_x = qv_z B'x \quad F_y = -qv_z B'y \]

- Force is restoring in one direction, anti-restoring in the other
- Acts like a converging lens in one direction and diverging one in the other
- Several quadrupoles in series with appropriate spacing leads to overall focusing of beam in both directions
How to get to high energy: the options

LINAC (planned for several hundred GeV - but not above 1 TeV, e.g ILC)

LHC circular machine with energy gain per turn ~0.5 MeV
acceleration from 450 GeV to 7 TeV takes about 20 minutes

....requires deflecting magnets (dipoles)

Rüdiger Schmidt
Another accelerator complex: SLAC
Event rates: Colliders

- Event rate proportional to luminosity

$$\mathcal{L} = f n \frac{N_1 N_2}{4\pi \sigma_x \sigma_y}$$

- f: revolution frequency (LHC: 11 kHz)
- n: number of bunches (LHC: 2808 bunches)
- N_i: number of particles in bunch i (LHC: $\sim 10^{11}$)
- σ: transverse size of the beam (LHC: $\sim 15 \, \mu m$)

- Luminosity measured in $\text{cm}^{-2}\text{s}^{-1}$ or $\text{pb}^{-1}\text{s}^{-1}$
 - Cross section per second
 - Specifies how many events per second would be observed for a process with unit cross section

$$N_{evt} = \sigma \mathcal{L} \Delta t$$
Event rates: Fixed Target

\[R = \sigma N_b n_T L \]

- **\(R \)**: rate (interactions per section)
- **\(N_b \)**: Beam rate (particles per second)
- **\(n_T \)**: Target number density (\(\rho/m_0 \))
- **\(L \)**: Target length

- Much higher rates achievable even with modest beam current and size
 - eg 1 m hydrogen target and a beam of \(10^{13} \) particles/sec is equivalent of \(\sim 10^{38} \, \text{cm}^{-2}\text{s}^{-1} \)
 - LHC is \(10^{34} \, \text{cm}^{-2}\text{s}^{-1} \)
Fixed Target: Secondary and Tertiary Beams

- Primary proton beam hits target and makes secondaries
- Magnets used to select appropriate particle species and mass (π, K, etc)
- Masks and filters to removed unwanted particles
- Decay of selected particles used to create tertiary beam
 - Neutral beams (eg ν) can be created
Colliders: The past 30 years

- e^+e^-
 - LEP (CERN) 1989-2000 $\sqrt{s} = 90-205$ GeV
 - SLC (SLAC) 1989-1998 $\sqrt{s} = 90$ GeV
 - Asymmetric B-factories $\sqrt{s} = 10$ GeV:
 - PEPII (SLAC) 1999-2009
 - KEKB (KEK) 1999-present

- ep
 - HERA (DESY) $\sqrt{s} = 920$ GeV

- Hadrons
 - Tevatron (FNAL) 1986-2010 $p\bar{p}$, $\sqrt{s} = 1.8-1.96$ TeV
 - LHC (CERN) 2010-present pp, $\sqrt{s} = 7, 8, 13$ TeV
 - Also lead-lead and lead-proton collisions ~ 2.7 TeV per nucleon
 - RHIC (BNL) 2000-present Heavy ions with $\sqrt{s} = 200$ GeV per nucleon
 - Also, polarized protons with $\sqrt{s} = 500$ GeV

$\sqrt{s} \equiv$ center of mass energy