A good treatment of this material can be found in Griffiths *Introduction to Particle Physics*
Outline

- Discovery of the J/ψ
- Charmonium Spectroscopy
- Charm Width and Charm Decays
- Discovery of Bottom
- Bottom Spectroscopy
- Hadrons with one heavy quark
Discovery of the J/ψ

- Nov 1974: mass $= 3.1$ GeV resonance observed simultaneously in $p + Be \rightarrow e^+e^-X$ at BNL and e^+e^- annihilation at SLAC
 - BNL team named it the J
 - SLAC team names it the ψ

Compromise: call it the J/ψ

- Incredible thing about the J/ψ: it’s very narrow
 - Not consistent with standard strong decay
 - Must be conserved quantum number that suppresses strong decay rate
Discovery of the J/ψ in Hadron Collisions (I)

Fixed target experiment at BNL: proton collisions on Be target

- Study e^+e^- pairs produced in pBe collisions
 - Be to minimize multiple scattering
- Goal: Measure the leptonic widths of meson decays (see HW #4 problem 2)
 - Two arm spectrometer
 - Cherenkov counters to separate electrons from hadrons
- Measure $M_{e^+e^-}$:
 $$m_{e^+e^-}^2 = m_1^2 + m_2^2 + 2[E_1 E_2 - p_1 p_2 \cos(\theta_1 + \theta_2)]$$
Discovery of the J/ψ in Hadron Collisions (II)

- Narrow peak in e^+e^- spectrum
- Width consistent with experimental resolution (~ 20 MeV)
 - Real width $\Gamma_J << 20$ MeV
- Question: Why is the resonance so narrow?
Discovery of the J/ψ in e^+e^- annihilation

- e^+e^- collisions at SPEAR collider at SLAC
- Huge counting rate in narrow range of E_{beam}
- Spread of beam energy comes from synchrotron radiation of the beams: $\sigma_{E_{beam}} = 0.56$ MeV
- Apparent width of peak = 1.3 MeV, consistent with E_{cm} resolution
- Produced in e^+e^- annihilation; resonance presumed to have same quantum numbers as the photon

$$J^{PC} = 1^{--}$$
• Definition of a Breit-Wigner

\[\sigma(E) = \frac{4\pi k^2}{(2s_1 + 1)(2s_2 + 1)} \frac{2J + 1}{(E - E_R)^2 + \Gamma^2/4} \frac{\Gamma^2/4}{(E - E_R)^2 + \Gamma^2/4} \]

where \(s_1 \) and \(s_2 \) are the spins of the initial particles, \(J \) is the spin of the resonance and \(k \) is the center-of-mass momentum for the collision

• For a state in turning into a state out

\[\sigma(E) = \frac{4\pi k^2}{(2s_1 + 1)(2s_2 + 1)} \frac{2J + 1}{(E - E_R)^2 + \Gamma^2/4} \frac{\Gamma_{in}\Gamma_{out}/4}{(E - E_R)^2 + \Gamma^2/4} \]

where \(\Gamma = \sum_n \Gamma_i \) is a sum over all partial decay rates

• For the \(J/\psi \) we know \(J = 1, s_1 = s_2 = \frac{1}{2} \)

• Using these facts about Breit-Wigners, you will prove on HW# 6

\[\Gamma = 0.068 \text{ Mev} \]
Interpreting the J/ψ as a $c\bar{c}$ bound state

- Before J/ψ discovery, theorists predicted existence of a 4th quark: charm:
 - GIM mechanism to explain no FCNC (we’ll talk about this in Lecture 15)
- Natural interpretation of the J/ψ:
 - A $c\bar{c}$ bound state
 - Strong decays conserve quark flavor
 - If the J/ψ mass is below threshold for producing a pair of charmed mesons, then that decay mode is closed
 - Thus, decays only occur though $c\bar{c}$ annihilation
- Interpretation of J/ψ as $c\bar{c}$ bound state supported by behaviour of R
 - Two narrow states below charmed meson threshold
 - Wider states can decay to charmed particles
 - Jump in R above threshold indicates charge 2/3 quark
What Makes Charmonium Special?

- Charm quark mass ~ 1.5 GeV
- Charmonium bound state almost non-relativistic
 - $\beta \sim 0.4$
- Can treat using non-relativistic QM (with perturbative relativistic corrections)
- Our insight from postronium will help understand the system
- Note: When we get to the Υ (Bottomonium) even less relativistic
Review: Quantum Numbers

- J/ψ produced in e^+e^- from a virtual photon
 \[J^{PC} = 1^{--} \text{ (odd parity and charge conjugation) } \]
- Use same quantum number description as for positronium
 \[2S + 1 L J \]

First combine spin of the q and \bar{q}, then combine with orbital angular momentum to get J

- We will see that
 \[J/\psi \equiv ^3S_1 \]

Quark spin=1, orbital angular momentum=0, total J/ψ spin=1
How does the J/ψ Decay? (I)

• Cannot decay to open charm: Mass too low

• Can only decay into odd number of gluons (Charge conjugation parity: the same reason $3S_1$ positronium must decay to 3 photons).
 ▶ Single virtual gluon decay not possible since initial state colorless and gluons have color charge (single photon decay is possible)
 ▶ Annihilation into 3-gluon state possible
 ▶ Other possible decays: $2g + \gamma$ and annihilation through a virtual γ
 • You have already calculated leptonic decay rate through single photon in HW # 4
 ▶ Decays rates all depend on $|\psi(0)|^2$ so relative rates can be calculated (see next slide)
 ▶ This explains “long” lifetime and narrow width

Dominant decay: through annihilation to 3 gluons
How does the J/ψ Decay? (II)

![Diagrams showing J/ψ decay processes](image)

<table>
<thead>
<tr>
<th>$J/\psi(1S)$ Decay Modes</th>
<th>Fraction (Γ_i/Γ)</th>
<th>Scale factor/Confidence level (MeV/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hadrons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>virtual $\gamma \to$ hadrons</td>
<td>(87.7 ± 0.5)%</td>
<td>-</td>
</tr>
<tr>
<td>ggg</td>
<td>(13.50 ± 0.30)%</td>
<td>-</td>
</tr>
<tr>
<td>γgg</td>
<td>(64.1 ± 1.0)%</td>
<td>-</td>
</tr>
<tr>
<td>$e^+ e^-$</td>
<td>(8.8 ± 1.1)%</td>
<td>-</td>
</tr>
<tr>
<td>$e^+ e^- \gamma$</td>
<td>(5.971±0.032)%</td>
<td>1548</td>
</tr>
<tr>
<td>$\mu^+ \mu^-$</td>
<td>(8.8 ± 1.4) x 10^{-3}</td>
<td>1548</td>
</tr>
<tr>
<td>$\mu^+ \mu^-$</td>
<td>(5.961±0.033)%</td>
<td>1545</td>
</tr>
</tbody>
</table>
Discovery of the J/ψ' in e^+e^- annihilation

- Another narrow resonance with same quantum numbers as photon
- Mass of $\psi' = 3686$ MeV
- The ψ' is also called the $\psi(2S')$
- Observed decays include:
 - To other $c\bar{c}$ states:
 - $\psi\pi\pi$ (50%)
 - $\chi_c + \gamma$ (24%)
 (More on the χ_c in a couple of slides)
 - Dileptons ($\sim 1\%$ per lepton species)
 - Additional hadronic decays make up the rest
• Model effect of multiple gluon exchange with “effective potential” that describes the $q\bar{q}$ binding
• Long range potential is linear $V = kr$
• At very short distances, potential Coulomb-like
• One phenomenological model of $V(r)$:

$$V_{QCD} = -\frac{4}{3} \alpha_s \frac{r}{r} + kr$$

with $\alpha_s \sim 0.2$ at the J/ψ and $k \sim 1$ GeV/fm.
• Other choices possible since charmonium only probes limited range of r
Reminder: Spectroscopy in the hydrogen atom

- Spectrum of photons absorbed or emitted provides essential information on hydrogen wave function
- Transition rate dominated by dipole transitions
- Selection rules
 \[
 \Delta \ell = \pm 1 \\
 \Delta m = 0, \pm 1
 \]
 \[\ell = 0 \rightarrow \ell = 0 \text{ not allowed}\]
 These rules result from \(J^{PC} = 1^{--}\) for the photon

- Same rules hold for photon transitions in charmonium
- Other transitions (single or double pion emission) also possible, with own selection rules
Figure 5.7 Spectrum of energy levels in positronium and charmonium. Note that the scale is greater by a factor of 100 million for charmonium. In positronium the various combinations of angular momentum cause only minuscule shifts in energy (shown by expanding the vertical scale), but in charmonium the shifts are much larger. All energies are given with reference to the 1^3S_1 state. At 6.8 electron volts positronium dissociates. At 633 MeV above the energy of the ψ charmonium becomes quasi-bound, because it can decay into D^0 and \bar{D}^0 mesons. (From “Quarkonium,” by E. Bloom and G. Feldman. Copyright © May 1982 by Scientific American, Inc. All rights reserved.)
States Not Produced Directly in e^+e^-

- Only states with $J^{PC} = 1^{--}$ can be produced directly in e^+e^- annihilation
- Can produce other states through radiative decays
- The “Crystal Ball” Detector
- NaI crystals with good EM energy resolution
- Studied photons produced when $\psi(2s)$ decays
• $\psi(3s)$ can decay to charmed mesons
• Study charm meson decays by looking for peaks in invariant mass of π and K combinations
• Peaks in cases with one K
• Interpret as weak decay where $c \rightarrow s$
History Repeats Itself: The Υ

- First discovery in hadronic collisions at Fermilab
 - Dimuon spectrum in proton collisions from nuclear target
- Confirmation a few months later from e^+e^- at DESY
- Peak shown here in fact two states merged together (due to experimental resolution)
Three narrow states $\Upsilon(1s)$-$\Upsilon(3s)$ below $B\bar{B}$ threshold

$\Upsilon(4s)$ decays to $B\bar{B}$

Step in R above $\Upsilon(4s)$ consistent with charge $-1/3$ quark
Figure 5.9 Bottomonium. Note that there are far more bound states than for charmonium—compare Fig. 5.7. (From “Quarkonium,” by E. Bloom and G. Feldman. Copyright © May 1982 by Scientific American, Inc. All rights reserved.)
<table>
<thead>
<tr>
<th>Term symbol $n^{2S + 1} L_J$</th>
<th>$I^G(J^{PC})$</th>
<th>Particle</th>
<th>mass (MeV/c²) [1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^1S_0</td>
<td>$0^+(0^-)$</td>
<td>$\eta_c(1S)$</td>
<td>2980.3 ± 1.2</td>
</tr>
<tr>
<td>1^3S_1</td>
<td>$0^-(1^-)$</td>
<td>$J/\psi(1S)$</td>
<td>3096.916 ± 0.011</td>
</tr>
<tr>
<td>1^1P_1</td>
<td>$0^-(1^-)$</td>
<td>$h_c(1P)$</td>
<td>3525.93 ± 0.27</td>
</tr>
<tr>
<td>1^3P_0</td>
<td>$0^+(0^+)$</td>
<td>$\chi_{c0}(1P)$</td>
<td>3414.75 ± 0.31</td>
</tr>
<tr>
<td>1^3P_1</td>
<td>$0^+(1^+)$</td>
<td>$\chi_{c1}(1P)$</td>
<td>3510.66 ± 0.07</td>
</tr>
<tr>
<td>1^3P_2</td>
<td>$0^+(2^+)$</td>
<td>$\chi_{c2}(1P)$</td>
<td>3556.20 ± 0.09</td>
</tr>
<tr>
<td>2^1S_0</td>
<td>$0^+(0^-)$</td>
<td>$\eta_c(2S)$, or η'_c</td>
<td>3637 ± 4</td>
</tr>
<tr>
<td>2^3S_1</td>
<td>$0^-(1^-)$</td>
<td>$\psi(3686)$</td>
<td>3686.09 ± 0.04</td>
</tr>
<tr>
<td>1^1D_2</td>
<td>$0^+(2^-)$</td>
<td>$\eta_{c2}(1D)^\dagger$</td>
<td></td>
</tr>
<tr>
<td>1^3D_1</td>
<td>$0^-(1^-)$</td>
<td>$\psi(3770)$</td>
<td>3772.92 ± 0.35</td>
</tr>
<tr>
<td>1^3D_2</td>
<td>$0^-(2^-)$</td>
<td>$\psi_2(1D)$</td>
<td></td>
</tr>
<tr>
<td>1^3D_3</td>
<td>$0^-(3^-)$</td>
<td>$\psi_3(1D)^\dagger$</td>
<td></td>
</tr>
<tr>
<td>2^1P_1</td>
<td>$0^+(1^-)$</td>
<td>$h_c(2P)^\dagger$</td>
<td></td>
</tr>
<tr>
<td>2^3P_0</td>
<td>$0^+(0^+)$</td>
<td>$\chi_{c0}(2P)^\dagger$</td>
<td></td>
</tr>
<tr>
<td>2^3P_1</td>
<td>$0^+(1^+)$</td>
<td>$\chi_{c1}(2P)^\dagger$</td>
<td></td>
</tr>
<tr>
<td>2^3P_2</td>
<td>$0^+(2^+)$</td>
<td>$\chi_{c2}(2P)^\dagger$</td>
<td></td>
</tr>
<tr>
<td>$??^??$</td>
<td>1^+^\dagger</td>
<td>$X(3872)$</td>
<td>3872.2 ± 0.8</td>
</tr>
<tr>
<td>$??^??$</td>
<td>$?^2(1^-)$</td>
<td>$Y(4260)$</td>
<td>4263^{+8}_{-9}</td>
</tr>
</tbody>
</table>

Notes:

* Needs confirmation.
† Predicted, but not yet identified.
Bottomonium: Current status

<table>
<thead>
<tr>
<th>Term symbol</th>
<th>J^P</th>
<th>Particle</th>
<th>mass (MeV/c²) [2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n^2S_{1/2}^0$</td>
<td>0*(0^{--})</td>
<td>$\eta_b(1S)$</td>
<td>9 390.9 ± 2.8</td>
</tr>
<tr>
<td>1^3S_1</td>
<td>0*(1^{--})</td>
<td>$Y(1S)$</td>
<td>9 460.30 ± 0.26</td>
</tr>
<tr>
<td>1^3P_0</td>
<td>0*(2^{++})</td>
<td>$\chi_{b0}(1P)$</td>
<td>9 859.44 ± 0.52</td>
</tr>
<tr>
<td>1^3P_1</td>
<td>0*(1^{++})</td>
<td>$\chi_{b1}(1P)$</td>
<td>9 892.76 ± 0.40</td>
</tr>
<tr>
<td>1^3P_2</td>
<td>0*(2^{++})</td>
<td>$\chi_{b2}(1P)$</td>
<td>9 912.21 ± 0.40</td>
</tr>
<tr>
<td>2^1S_0</td>
<td>0*(0^{--})</td>
<td>$\eta_b(2S)$</td>
<td></td>
</tr>
<tr>
<td>2^3S_1</td>
<td>0*(1^{--})</td>
<td>$Y(2S)$</td>
<td>10 023.26 ± 0.31</td>
</tr>
<tr>
<td>1^1D_2</td>
<td>0*(2^{--})</td>
<td>$\eta_b(1D)$</td>
<td></td>
</tr>
<tr>
<td>1^3D_1</td>
<td>0*(1^{--})</td>
<td>$Y(1D)$</td>
<td></td>
</tr>
<tr>
<td>1^3D_2</td>
<td>0*(2^{--})</td>
<td>$Y_2(1D)$</td>
<td>10 161.1 ± 1.7</td>
</tr>
<tr>
<td>1^3D_3</td>
<td>0*(3^{--})</td>
<td>$Y_3(1D)$</td>
<td></td>
</tr>
<tr>
<td>2^1P_1</td>
<td>0*(1^{++})</td>
<td>$\eta_b(2P)$</td>
<td></td>
</tr>
<tr>
<td>2^3P_0</td>
<td>0*(0^{++})</td>
<td>$\chi_{b0}(2P)$</td>
<td>10 232.5 ± 0.6</td>
</tr>
<tr>
<td>2^3P_1</td>
<td>0*(1^{++})</td>
<td>$\chi_{b1}(2P)$</td>
<td>10 255.46 ± 0.55</td>
</tr>
<tr>
<td>2^3P_2</td>
<td>0*(2^{++})</td>
<td>$\chi_{b2}(2P)$</td>
<td>10 268.65 ± 0.55</td>
</tr>
<tr>
<td>3^3S_1</td>
<td>0*(1^{--})</td>
<td>$Y(3S)$</td>
<td>10 355.2 ± 0.5</td>
</tr>
<tr>
<td>3^3P_1</td>
<td>0*(1^{++})</td>
<td>$\chi_b(3P)$</td>
<td>10 530 ± 5 (stat.) ± 9 (syst.) [4]</td>
</tr>
<tr>
<td>4^3S_1</td>
<td>0*(1^{--})</td>
<td>$Y(4S)$ or $Y(10580)$</td>
<td>10 579.4 ± 1.2</td>
</tr>
<tr>
<td>5^3S_1</td>
<td>0*(1^{--})</td>
<td>$Y(5S)$ or $Y(10860)$</td>
<td>10 865 ± 8</td>
</tr>
<tr>
<td>6^3S_1</td>
<td>0*(1^{--})</td>
<td>$Y(11020)$</td>
<td>11 019 ± 8</td>
</tr>
</tbody>
</table>

Notes:

* Preliminary results. Confirmation needed.
Phenomenological fit to static QCD potential

![Graph showing static Q\bar{Q} potential as a function of quarkonium radius r.]

FIG. 33: Static Q\bar{Q} potential as a function of quarkonium radius r

Important test system for lattice QCD calculations
• Until 2003, all heavy quarkonia states consistent with $Q\bar{Q}$ interpretation

• First exception $X(3872) \rightarrow \psi\pi\pi$
 ▶ Has been observed in other decay modes as well
 ▶ Appears to have quantum numbers $J^{PC} = 2^{--}$ and to be within 1 MeV of open-charm threshold
 ▶ Several possible interpretations including diquark-antidiquark bound state

• Since then, other unconventional states labeled X or Y have been observed

• A good laboratory for understanding if other color singlet states beyond $q\bar{q}$ are allowed
More on Mesons With One Heavy Quark

- The $\psi(3S)$ and $\Upsilon(4S)$ are above threshold for producing charm and bottom pairs respectively
 - Charmed mesons called D, D^*
 - Bottom mesons called B, B^*
 - Charm and bottom baryons also exist, although they are too heavy to be produced at the $\psi(3S)$ or $\Upsilon(4S)$; Same for D_s and B_s
 - These states have been studied at LEP and in hadron collisions

- In both cases, just above threshold, so no additional pions produced
- Sitting on these resonances allows for detailed studies of the properties of these mesons
- Quark model predicts what states we expect and estimates of their masses
- These particles decay weakly
 - We’ll talk about the weak decays of the lowest lying states in a couple of weeks
 - Today, quickly review the spectroscopy and strong decays
Charmed Meson Spectroscopy

- D mesons: $c\bar{u}, \ c\bar{d}\ c\bar{u}, \ \bar{c}d; \ D_s$ mesons: $c\bar{s}, \ \bar{c}s$

- Like hydrogen atom, heavy fermion bound to light one

- But here light fermion relativistic

- Lowest mass state must decay weakly, others can decay strongly via π emission
• B mesons: $b\bar{u}$, $b\bar{d}b\bar{u}$, $b\bar{d}$; B_s mesons: $b\bar{s}$, $\bar{b}s$
• Similar pattern as for D mesons