Lecture 10: The Structure of the Proton: Part II

Sept 25, 2018
Reminder: Deep Inelastic Scattering

- W is the invariant mass of the hadronic system
- In lab frame: $P = (M, 0)$
- In any frame, $k = k' + q$, $W = p + q$
- Invariants of the problem:

 \[
 Q^2 = -q^2 = -(k - k')^2 = 2EE'(1 - \cos \theta) \quad \text{[in lab]}
 \]
 \[
 P \cdot q = P \cdot (k - k') = M(E - E') \quad \text{[in lab]}
 \]

- Define $\nu \equiv E - E'$ (in lab frame) so $P \cdot q = m\nu$ and

 \[
 W^2 = (P + q)^2 = (P - Q)^2 = M^2 + 2P \cdot q - Q^2 = M^2 + 2M\nu - Q^2
 \]

 where $Q^2 = -q^2$

- Elastic scattering corresponds to $W^2 = P^2 = M^2$

 \[
 Q^2 = 2M\nu \text{ elastic scattering}
 \]

- We can define 2 indep dimensionless parameters

 \[
 x \equiv Q^2/2M\nu; \quad (0 < x \leq 1)
 \]
 \[
 y \equiv \frac{P \cdot q}{P \cdot k} = 1 - E'/E; \quad (0 < y \leq 1)
 \]
Reminder: Structure Functions

- Using notation from previous page, we can express the x-section for DIS

$$
\frac{d\sigma}{d\Omega dE'} = \frac{\alpha^2}{4E^2} \frac{\cos^2\left(\frac{1}{2}\theta\right)}{\sin^4\left(\frac{1}{2}\theta\right)} \left[W_2(q^2, W) + 2W_1(q^2, W) \tan^2\left(\frac{1}{2}\theta\right) \right]
$$

- W_1 and W_2 are called the structure functions
 - Angular dependence here comes from expressing covariant form on last page in lab frame variables
 - Two structure functions that each depend on Q^2 and W
 - Alternatively, can parameterize wrt dimensionless variables:
 \[
 x \equiv \frac{Q^2}{2M\nu} \\
y \equiv \frac{P \cdot q}{P \cdot k} = 1 - \frac{E'}{E}
 \]
• Change variables

\[F_1(x, Q^2) \equiv MW_1(\nu, Q^2) \]
\[F_2(x, Q^2) \equiv \nu W_2(\nu, Q^2) \]

• Rewrite cross section in terms of \(x, y, Q^2 \)

\[
\frac{d^2\sigma^{ep}}{dx dQ^2} = \frac{4\pi\alpha^2}{Q^4} \left[\left(1 - y - \frac{M^2 y^2}{Q^2} \right) \frac{F_2(x, Q^2)}{x} + y^2 F_1(x, Q^2) \right]
\]

• In DIS limit, \(Q^2 >> M^2 y^2 \):

\[
\frac{d^2\sigma^{ep}}{dx dQ^2} = \frac{4\pi\alpha^2}{Q^4} \left[(1 - y) \frac{F_2(x, Q^2)}{x} + y^2 F_1(x, Q^2) \right]
\]

• Can event-by-event determine \(x, y \) and \(Q^2 \) from lab frame variables

\[Q^2 = 4EE' \sin^2 \frac{\theta}{2}, \quad x = \frac{Q^2}{2M(E - E')} = \frac{Q^2}{2M\nu} =, \quad y = 1 - \frac{E'}{E} \]
Reminder: The Parton Model

- Supposed there are pointlike partons inside the nucleon
- Work in an “infinite momentum” frame: ignore mass effects
- Proton 4-momentum: $P = (P, 0, 0, P)$
- Visualize stream of parallel partons each with 4-momentum xP where $0 < x < 1$; neglect transverse motion of the partons
 - x is the fraction of the proton’s momentum that the parton carries
- If electron elastically scatters from a parton

\[
(xP + q)^2 = m^2 \simeq 0
\]
\[
x^2 P^2 + 2xP \cdot q + q^2 = 0
\]

Since $P^2 = M^2$, if $x^2 M^2 \ll q^2$ then
\[
2xP \cdot q = -q^2 = Q^2
\]
\[
x = \frac{Q^2}{2P \cdot q} = \frac{q^2}{2M \nu}
\]

Deep inelastic scattering can be described as elastic scattering of the lepton with a parton with momentum xP
Electron Quark Scattering

- Quarks are Dirac particles, so can just calculate the scattering in QED
- We won’t do the calculation here (see Thomson p. 191). Answer is

\[
\frac{d\sigma^{eq}}{dQ^2} = \frac{4\pi e_i^2}{Q^4} \left[(1 - y) + \frac{y}{2}\right]
\]

- Looks pretty similar to the previous page

\[
\frac{d^2\sigma^{ep}}{dxdQ^2} = \frac{4\pi\alpha^2}{Q^4} \left[(1 - y) \frac{F_2(x, Q^2)}{x} + y^2 F_1(x, Q^2)\right]
\]

- The \(F_1(x, Q^2) \) and \(F_2(x, Q^2) \) carry the information about the distribution of the quarks inside the proton
- Note: We say last time that \(F_1(x, Q^2) \) is due to the magnetic interactions while \(F_2(x, Q^2) \) is the electric interaction
 - If partons are Dirac particles, we expect a well defined relationship between these two terms
Convolution of PDF with scattering cross section

• Cross section is incoherent sum over elastic scattering with partons

\[
\frac{d\sigma^{eq}}{dQ^2} = \frac{4\pi\alpha^2}{Q^4} \left[(1 - y) + \frac{y}{2} \right]
\]

\[
\frac{d\sigma^{ep}}{dx dQ^2} = \int_0^1 dx \sum_i e_i^2 f_i(x, Q^2) \frac{4\pi\alpha^2}{Q^4} \left[(1 - y) + \frac{y}{2} \right] \delta(x - \frac{Q^2}{2M_N})
\]

• Comparing to the previous expression for ep scattering

\[
\frac{d^2\sigma^{ep}}{dx dQ^2} = \frac{4\pi\alpha^2}{Q^4} \left[(1 - y) \frac{F_2(x, Q^2)}{x} + y^2 F_1(x, Q^2) \right]
\]

We find

\[
F_2^{ep}(x, Q^2) = x \sum_i e_i^2 f_i(x, Q^2)
\]

\[
F_1^{ep}(x, Q^2) = \frac{1}{2} \sum_i e_i^2 f_i(x, Q^2)
\]

\[
\therefore F_2^{ep}(x, Q^2) = 2x F_1^{ep}(x, Q^2)
\]

• Last equation is called the Callan-Gross relation

• If partons had spin-0 rather than spin-\(\frac{1}{2}\), we would have found \(F_1 = 0\)
What does the data look like?

The partons act like spin-1/2 Dirac particles!
• $f_i(x)$ is the prob of finding a parton of species i with mom fraction between x and $x + dx$ in the proton.

• If the partons together carry all the momentum of the proton

$$\int dx \ x f(x) = \int dx \ x \sum_i f_i(x) = 1$$

where \sum_i is a sum over all species of partons in the proton

• We call $f(x)$ the parton distribution function since it tells us the momentum distribution of the parton within the proton

• This is the first example of a “sum rule”
• It’s natural to associate the partons with quarks, but that’s not the whole story
• Because ep scattering occurs through the electromagnetic interaction, it only occurs via scattering with charged partons.
• If the proton also contains neutral partons, the EM scattering won't “see” them
 ▶ For example: EM scattering blind to gluons
• Let’s assume that the ep scattering occurs through the scattering of the e off a quark or antiquark
 ▶ We saw that the SU(3) description of the proton consists of 2 u and 1 d quark.
 ▶ However we can in addition have any number of $q\bar{q}$ pairs without changing the proton’s quantum numbers
 ▶ The 3 quarks (uud) are called valence quarks. The additional $q\bar{q}$ pairs are called sea or ocean quarks.
 • Pair production of $q\bar{q}$ pairs within the proton
To get the right quark content for the proton:

\[
\begin{align*}
\int u(x) - \bar{u}(x) \, dx &= 2 \\
\int d(x) - \bar{d}(x) \, dx &= 1 \\
\int s(x) - \bar{s}(x) \, dx &= 0
\end{align*}
\]
If partons are quarks, what do we expect?

- Elastic scattering from proton has \(x = 1 \)
- If 3 quarks carry all the proton’s momentum each has \(x = 0.3 \)
- Interactions among quarks smears \(f(x) \)
- Radiation of gluons softens distribution and adds \(q\bar{q} \) pairs
 - Describe the 3 original quarks as “valence quarks”
 - \(q\bar{q} \) pairs as sea or ocean
- Some of proton’s momentum carried by gluons and not quarks or antiquarks
Using Isospin: Comparing the Proton and Neutron

- Ignore heavy quark content in the proton: consider only u, d, s
- Write the proton Structure Function

\[
\frac{F_{2}^{p}(x)}{x} = \sum_{i} f_{i}^{p}(x)e_{i}^{2} = \frac{4}{9}(u^{p}(x) + \bar{u}^{p}(x)) + \frac{1}{9}(d^{p}(x) + \bar{d}^{p}(x)) + \frac{1}{9}(s^{p}(x) + \bar{s}^{p}(x))
\]

- Similarly, for the neutron

\[
\frac{F_{2}^{n}(x)}{x} = \sum_{i} f_{i}^{n}(x)e_{i}^{2} = \frac{4}{9}(u^{n}(x) + \bar{u}^{n}(x)) + \frac{1}{9}(d^{n}(x) + \bar{d}^{n}(x)) + \frac{1}{9}(s^{n}(x) + \bar{s}^{n}(x))
\]

- But isospin invariance tells us that $u^{p}(x) = d^{n}(x)$ and $d^{p}(x) = u^{n}(x)$
- Write F_{2} for the neutron in terms of the proton pdf’s (assuming same strange content for the proton and neutron)

\[
\frac{F_{2}^{n}(x)}{x} = \frac{4}{9}(d^{p}(x) + \bar{d}^{p}(x)) + \frac{1}{9}(u^{p}(x) + \bar{u}^{p}(x)) + \frac{1}{9}(s^{p}(x) + \bar{s}^{p}(x))
\]

- Assuming sea q and \bar{q} distributions are the same:

\[
u(x) - \bar{u}(x) = u_{v}(x), \quad d(x) - \bar{d}(x) = d_{v}(x), \quad s(x) - \bar{s}(x) = 0
\]

- Taking the difference in F_{2} for protons and neutrons:

\[
\frac{1}{x}[F_{2}^{p}(x) - F_{2}^{n}(x)] = \frac{1}{3}[u_{v}(x) - d_{v}(x)]
\]

which gives us a feel for the valence quark distribution
What the data tells us

From Halzen and Martin

- Looks the way we expect from the cartoon on page 27
- Next question: How to measure the partons’ charge
 - To do this, must compare e and ν scattering!

Fig. 9.8 The difference $F_2^p - F_2^n$ as a function of x, as measured in deep inelastic scattering. Data are from the Stanford Linear Accelerator.
Neutrino-(anti)quark Charged Current Scattering (I)

- Start with ν_μ or $\bar{\nu}_\mu$ beam
 - Distribution of ingoing ν 4-momenta determined from beam design
 - Outgoing μ^\pm momentum measured in spectrometer

- Exchange via W^\pm (“charged current interaction”)
 - ν scatter against \bar{d} and u
 - $\bar{\nu}$ scatter against u and \bar{d}

We’ll talk about neutral currents in a few weeks
Not useful for structure function measurements
(Can’t measure outgoing lepton 4-momentum)
Neutrino-(anti)quark Scattering (II)

- Neutrinos left handed, anti-neutrinos right handed
- Left handed W^\pm couples to left-handed quarks and right-handed anti-quarks

\[
\frac{d\sigma_{\nu q}}{d\cos\theta} \propto \text{constant} \quad \frac{d\sigma_{\bar{\nu}q}}{d\cos\theta} \propto (1 + \cos\theta^*)^2
\]

where θ^* is scattering angle in νq center of mass

- νq and $\bar{\nu}q$ scattering allowed for all angles, but $\bar{\nu}q$ and $\nu\bar{q}$ vanish in backward direction

- We’ll see later that this left-handed coupling is also reason that π and K preferentially decay to μ and not e

 - μ needs to be right-handed since π, K have spin 0
 - rh component of spinor $\propto (v/c) \propto m_\mu$ in matrix element;
 decay rate $\Gamma \propto m_\mu^2$

This is why accelerators produce predominantly $\nu\mu, \bar{\nu}\mu$
Neutrino-(anti)quark Scattering (III)

- The charged current cross sections are ν_μ:

$$\frac{d\sigma(\nu_\mu \, d \rightarrow \mu^- \, u)}{d\Omega} = \frac{G_F^2 \cdot s}{4\pi^2}$$

$$\frac{d\sigma(\nu_\mu \, u \rightarrow \mu^+ \, d)}{d\Omega} = \frac{G_F^2 \cdot s \cdot (1 + \cos \theta)^2}{4\pi^2}$$

$$\frac{d\sigma(\nu_\mu \, \bar{u} \rightarrow \mu^- \, \bar{d})}{d\Omega} = \frac{G_F^2 \cdot s \cdot (1 + \cos \theta)^2}{4\pi^2}$$

$$\frac{d\sigma(\nu_\mu \, \bar{d} \rightarrow \mu^+ \, \bar{u})}{d\Omega} = \frac{G_F^2 \cdot s}{4\pi^2}$$

- You will prove on homework #5 that

$$1 - y = \frac{p \cdot k'}{p \cdot k} = \frac{1}{2} \cdot (1 + \cos \theta^*)$$

which allows us to rewrite the above expressions in terms of the relativistically invariant variable y

- Since $\int \frac{(1+\cos \theta)^2}{4} d \cos \theta = 1/3$,

$$\sigma^{\nu d} : \sigma^{\nu \bar{u}} : \sigma^{\bar{\nu} u} : \sigma^{\bar{\nu} \bar{d}} = 1 : \frac{1}{3} : \frac{1}{3} : 1$$
What is the Advantage of ν Scattering?

- The quarks and antiquarks have different angular dependence, so we can extract their pdf’s separately by looking at cross sections as a function of angle
 - Angular dependence can be expressed in terms of dimensionless variable y
 - Parity violation means we have a third structure function F_3 that I won’t talk about today
- Weak “charge” of the u and d is the same, so factors of $4/9$ and $1/9$ are not present
- Using previous expressions and integrating over angle:

$$\frac{d\sigma(\nu p)}{dx} = \frac{G_F^2 x_s}{\pi} \left[d(x) + \frac{1}{3} \bar{u}(x) \right]$$

$$\frac{d\sigma(\nu n)}{dx} = \frac{G_F^2 x_s}{\pi} \left[d^n(x) + \frac{1}{3} \bar{u}^n(x) \right]$$

$$= \frac{G_F^2 x_s}{\pi} \left[u(x) + \frac{1}{3} \bar{d}(x) \right]$$

where we have written everything in terms of the proton PDFs
- If we believe the partons in the proton and neutron are quarks, we can relate the structure functions measured in νN and eN
An Aside: How do we know the incoming neutrino energy?

- Primary proton beam incident on target produces secondary π and K^-
- Use magnets and shielding to select range of momenta of secondaries
- Long decay region to allow the $\pi \rightarrow \mu \nu$ and $K \rightarrow \mu \nu$ decays
- Two body decay gives correlation between decay angle and neutrino momentum
Comparing eN and $\nu N \nu N$ Scattering (I)

- Now, let’s take an isoscalar target N (equal number of protons and neutrons)
- In analogy with electron scattering

$$\frac{F_2^{\nu N}}{x} = u(x) + d(x) + \bar{u}(x) + \bar{d}(x)$$

- If we go back to our electron scattering and also require an isoscalar target

$$\frac{F_2^{e N}}{x} = \frac{5}{18} \left(u(x) + d(x) + \bar{u}(x) + \bar{d}(x) \right)$$

- So, if the partons have the charges we expect from the quark model

$$F_2^{e N}(x) = \frac{5}{18} F_2^{\nu N}(x)$$
Comparing eN and νN Scattering (II)

- The partons we “see” in eN scattering are the same as the ones we “see” in νN scattering.

- This confirms our assignment of the quark charges:

 The Quarks Have Fractional Charge!
As we previously did for electron scattering, we can look at an isoscalar target N.

Starting with the cross sections for νq scattering we can go through the same convolution with the PDFs that we did for the eN case.

The result is

$$\sigma^{\nu N} = \frac{G_F 2ME}{2\pi} \left[Q + \frac{1}{3} \overline{Q} \right]$$

$$\sigma^{\bar{n}uN} = \frac{G_F 2ME}{2\pi} \left[\overline{Q} + \frac{1}{3} Q \right]$$

where

$$Q \equiv \int x[u(x) + d(x)]$$

$$\overline{Q} \equiv \int x[\bar{u}(x) + \bar{d}(x)]$$

and we have ignored the small strange component in the nucleon.

Thus

$$R_{\nu/\bar{\nu}} \equiv \frac{\sigma^{\bar{n}uN}}{\sigma^{\nu N}} = \frac{\overline{Q} + Q/3}{Q + \overline{Q}/3} = \frac{1 + 3\overline{Q}/Q}{3 + Q/\overline{Q}}$$
• Experimentally $R_{\nu/\bar{\nu}} = 0.45 \rightarrow \overline{Q}/Q = 0.5$

There are antiquarks within the proton!
How Much Momentum do the q and \bar{q} Carry?

- Momentum fraction that the q and \bar{q} together carry is

$$\int xF_2^\nu N(x)dx = \frac{18}{5} \int xF_2^{eN}(x)dx$$

- At $q^2 \sim 10$ GeV2 that this fraction ~ 0.5

 Only half the momentum of the proton is carried by quarks and antiquarks

- What’s Left? The gluon!
• Charged lepton probes study charged partons
• Neutrinos study all partons with weak charge
 \[\int x F_2^{\nu N}(x) dx = \frac{18}{5} \int x F_2^{e N}(x) dx \] tells us that all the weakly interacting partons are charged
• To study the gluon directly, will need a strong probe
 ▶ No pointlike strong probes
 ▶ Will need to convolute two pdf’s

▶ More on this when we talk about hadron colliders in a few weeks
• Can also indirectly study gluon by seeing how it affects the quarks
Scaling Violations in DIS

- QCD corrections to DIS come from incorporating gluon brem from the q and \bar{q} and pair production $g \rightarrow q\bar{q}$
- The ability to resolve these QCD corrections are q^2 dependent
- Expected result:
 - At high x the quark pdf’s decrease
 - At low x the quark and antiquark pdf’s increase
- Complete treatment in QCD via coupled set of differential equations, the Alterelli-Parisi evolution equations
DIS in the Modern Era: The HERA collider

- ep collider located at DESY lab in Hamburg
- 27.5 GeV (e) x 920 GeV (p)
- Two general purpose detectors (H1 and Zeus)
What Q^2 and x are relevant?
Our best fits of PDFs at present

- Fit experimental data to theoretically motivated parameterizations
- Combine data from many experiments, using Alterelli-Parisi to account for differences in Q^2 (correct to common value)
- Analysis of uncertainties to provide a systematic uncertainty band
Modern $F_2(x, Q^2)$ Measurements