Physics 137B (Professor Shapiro) Spring 2010

GSI: Tom Griffin

Homework 5 Solutions
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This is an upper bound for the ground state energy for every value of

c?. To find the lowest upper bound we need to find the minimum of

this function.
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Then the minimum value of E(c?) is:
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Therefore the ground state energy must be less than 0.522hw.
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which is an even function of x. But ¢;(z) = z¢g(x) is an odd function
in x. Thus < ¢1]|Ypg >= ffooo ¢1(x)1ho(x)dx is the integral of an odd
function and thus is zero. So v (z) is a suitable trial function for the
first excited state. Then we have

The true ground state of the harmonic oscillator is 1y (x) = (
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This is an upper bound for the first excited state energy for every value
of ¢2. To find the lowest upper bound we need to find the minimum of
this function.
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Then the minimum value of E (c?) is:

~ ~ K |14 11 V14
ZEmin = l;(____ __ji) = h&d( x/g + ’ ’
2143 263

mw 3
e V3 x 143
N 13

~ 1.593hw

)

Therefore the first excited state energy must be less than 1.593hw.

2. The infinite square well has energy eigenvalues E,, = an?/m corresponding

to the one-particle energy eigenstate v, (x) = \/%sin(%), where n is a
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positive integer and « := ST

(a) In this problem there are two identical neutrons (call these particles
1 and 2) and one proton (call this particle 3). The ground state of
the combined system will correspond to all three particles in the one-
particle square well n=1 level, giving total energy F = a(2/m, +1/m,)
(we will see that this state is allowed by considering the symmetrization
properties in what follows). There is only one proton, so it does not
need to satisfy any particular symmetrization. The proton can have
spin up or down (2 possible states). The neutrons on the other hand
must have an antisymmetric wavefunction under interchange of the two
neutrons. If they are in the same spatial state (the ground state) of the
infinite square well, their spatial wavefunction can only be symmetric.
The neutrons must then have spins in the (antisymmetric) singlet state
in order to make their total wavefunction antisymmetric (1 possible
state). Thus the degeneracy of the ground state is 2, with the ground
state space having a basis:

|1 >1 |1 >2 Y1 >3 \/L§<| T>1 | {>0 = {>1 [ 1>2)] T>3
|1 >1 |1 >2 Y1 >3 \/L§(| T>1 [ 1> = I>1 | T>2)] I>3

Each of these states is clearly antisymmetric under the interchange of
the two neutrons (particles 1 and 2).

The first excited state of the combined system will have two particles
in the square well n=1 level and one particle in the n=2 level. The
neutron has a larger mass than the proton so it will be of lower energy
to put one of the neutrons in the n=2 level (rather than the proton).



So the energy of the first excited state will be E' = «a(5/m,, + 1/m,,).
Therefore, one of the neutrons is in the n=2 level with the other in
the n=1 level and we can form either a symmetric or antisymmetric
spatial state for the neutrons and combine it with an antisymmetric or
symmetric neutron spin state respectively. The proton, meanwhile, is
in the n=1 level and can have spin either up or down. So we have the
following states:
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Therefore the degeneracy of the first excited state is 8.

We again have three particles, 2 7% (particles 1 and 2) and one 7™
(particle 3). The pions are bosons so we need to make sure that the
wavefunctions are symmetric under the interchange of identical pions.
For the ground state we can put all pions in the n=1 level:

[ty >1 |11 >9 |11 >3

This is symmetric under interchange of particles 1 and 2, has energy
E = a(2/mg, + 1/m,, ) and degeneracy 1.

Since the . is heavier than the 7y, the n=2 level of the 7, has lower
energy than that of the my. The first excited state will thus have the
7, in the n=2 level and the two mys in the n=1 level.

W1 >1 |¢1 >9 Wz >3

So the first excited state has energy E = a(2/my, +4/m., ) and degen-
eracy 1.

Two identical particles (one with spin up and one with spin down) can
be put in each level of the square well. Therefore, of the five neutrons,
two can be placed in n=1, two in n=2 and one in n=3. Of the three
protons, two can be placed in n=1 and one in n=2. This gives a total
energy for the ground state of

E=a((2x12+2x2243?%) /m,+(2x12+2%)/m,) = a(19/m,+6/m,).
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4.

(d) All eleven pions can be put in the n=1 level, so the ground state energy
is B = a(8/mnx, + 3/mx, ).

NOTE: for this question, some students assumed that the neutron and proton
were equal in mass (and also that the my and 7, had equal mass), and this
is approximately true. This would change the degeneracies obtained above.
I did not penalise students for making this assumption.

. The totally antisymmetric state of three fermions is:
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(a) Using the ultra-relativistic expression Er = hckp = he(372p)'/? and
approximating the kinetic energy as N Efr (correct up to a numerical
factor), equation 10.51 of the text is replaced by:
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In fact there is a mistake in the statement of this question: stability is
NOT associated with Ep < 0. If bM*/3 < %GM2 then Er ~ —}% and
thus the star will collapse (minimum energy at R = 0). In this case
Er < 0 and the star is certainly not stable. Conversely, if bM*/? >
%GM 2 then Ep ~ % and the star will expand to larger values of R until
the electrons become non-relativistic. In this case the white dwarf will
be stable. So stability requires:
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Therefore the critical mass, above which the star is unstable, is
50\ 522 (meNYP oz N
Mc = (@) = W(E) (A—%) (thlS is known as the
Chandrasekhar limit).

(b) When a white dwarf star collapses, inverse beta decay can convert the
electrons and protons to neutrons, leaving behind a neutron star. The
neutrons then form a fermi gas. The calculation for Chandrasekhar
limit is then identical to part (a), except now Z = 1 (since trivially
there is one neutron per neutron “nucleus”), A =1 and M, — M,, so
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5. To calculate the integrals, note the following standard integral:
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By symmetry, we have the equivalent expressions for rs:
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Finally, as is calculated in detail in equations 10.74 to 10.81 of the text (now
with A replacing Z in the calculation):
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So:
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