Physics 137B (Professor Shapiro) Spring 2010

GSI: Tom Griffin

Homework 3 Solutions

1. The Hj, spectrum is non-degenerate so the first-order corrections are given

by:
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In the above expressions a = (2)!/2 (refer to equations 4.134 and 4.168 of

the text).



2. H is the hydrogenic Hamiltonian and so

—Ze?
H(r) = V(r)— (—2%
) = Vi)~ (e
62 T‘2
_ (47rZ50)2R(ﬁ —-3+2%) r<R
0 r>R

(a) The Hy energy spectrum is degenerate, with n? distinct values of [ and
m for each energy level. So we need to apply degenerate perturbation
theory. Note that since H' only depends upon r (and not on angular
variables), L? and L, commute with H' and thus are still “good” op-
erators for this perturbation. Therefore, if we choose a basis of L? and
L. eigenstates then H’ will necessarily already be diagonal in each de-
generate subspace. So, using this “good” basis, we can apply the usual
formulae from non-degenerate perturbation theory. The first order en-
ergy shift for the state |n,l, m > will be:
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(b) Taking |Ru(r)]> ~ |Ru(0)]* = 5

53 (see equation 7.145 of text), we
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3. Let us first examine the Hj energy spectrum. The energy levels with n = p

are all non-degenerate. The other energy levels with n # p are doubly
degenerate, with the |n = my, p = my > state having the same energy as the
|n = mgy, p = my > state. In general we have:
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Therefore, for n = r = my and p = s = me:
2. (F 1 2my — 1
< my,mo|H'|my,mg > = 10_3E1(E)/0 dxz[sin(( mlL )Wx)%—sin(ﬁ—;)
(2my + )7z . —TX
- ( L ) o Sln( )]5m27m2
2. L 2 2
= 10°%E(5) [ ——+2— ——— +2
1(L)47r[(2m1—1)+ P ]
2 1
= 10°%E, 2 (—— +1
17T(4m% 1 )

3



But when n = s =my and p = r = my for my # ma:
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So the H’' matrix block in the doubly degenerate subspace spanned by
{|my, mg >, |ma, my >} with my # my is:
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This is already diagonal so we are already working in a “good” basis. There-
fore we can conclude that the change in the energy of state |n,p > is:
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. As shown on pages 290-292 of the text, the eigenstates of Hy = 57 2re the
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spherical harmonics Y}, (0, ¢), with E;, = ﬁ Choose a coordinate
system so that the electric field lies along the z-axis. Then
H = —d,E = —qRycosOFE, where cosf is the angle of the dipole from

the z-axis. The matrix elements in each degenerate subspace (i.e. fixed [)
must be calculated:
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From equations 6.101 and 6.88 in the text, it is evident that ©y,,(0) is either
an even or odd function of cos. In either case, this implies that |0y, (0)|?
is an even function of cosf and so the above integrand (|0, ()| cosf) is
an odd function of cos@. Thus the integral vanishes (since integrating an
odd function on a domain symmetric about the origin is zero). That is,
< I,m|H’'|l;m" >= 0. This means that the matrix elements of H' are zero
in each degenerate subspace and thus H’ does not separate the degeneracy
at first order.

. We are examining the degenerate n = 2 subspace of the hydrogen atom.
We want to show that H' = ez = e€rcosf is diagonal in this degenerate
subspace when we choose the basis {1, &, &3, &4}, where:
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Denote the state 1o, by |I,m >. Then:
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The key term in the above expression is the d,, ,,» which allows us to conclude
that any matrix element between states with different values of m is zero.
Therefore:

<&GIH'N&G> = 0 for i=2,3,4
<&IH'NG > = 0 fori=14
<&GH'|E > = 0 for i=14
<4GIH'N&G> = 0 for i=1,2,3



So the only possible non-zero off-diagonal terms are < &|H'|¢3 > and <
& H'|&, > which have m = 0. In the m = m/ = 0 case we have:
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where K is a real constant independent of w.

Note that P, is an odd (even) polynomial when [ is odd (even). So when

[ = I’ the integrand is an odd function of w and the integral is zero. Hence
< 1,0|H’'|l,0 >= 0. Therefore:
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because < 0,0|H’|1,0 > is real (see the expression above).

Similarly < &|H'|&y >=< &|H'|€s >*= 0. So it has been shown that all
off-diagonal elements are zero.



