Physics 137B (Professor Shapiro) Spring 2010

GSI: Tom Griffin

Homework 1 Solutions

1. The hydrogenic atom involves a particle of charge —e surrounding a nucleus
of charge Ze. The Hamiltonian is given by (Equation 7.92 of text):
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where = T is the reduced mass of the system. This Hamiltonian
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has ground state energy £ = ———(——)" and effective Bohr radius of
, 2h° “dmeg
4deg)h
a= % (see equations 7.114 and 7.151 of text). This result can then be
e

applied to each case. In the following, Fy = —13.6eV denotes the hydrogen
atom ground state energy and ag = 5.29 x 107''m denotes the hydrogen
atom Bohr radius.

(a) Z=1,m=mc, M = Macuteron
ExFEy, a=ag

(b) Z=2,m=me, M =mpy,
E ~4F,, a=ay/2

(¢) Z=1,m=me, M =m,
f=me/2
E~Ey/2, a=2ag

(d) Z=1,m=m, =207 X me, M =m,
1~ 186 x m,
E ~ 186E,, a= ay/186
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(e) The Hamiltonian is now: H = 5— _ 2y
1

with 4 = my/2 and so
2

replacing ﬁ by Gm3; we have:
E= —2L7_12(Gm?\,)2 ~ 812 x 10-%%¢V,
hQ
a= -~ 7.16 x 10%m
Gumy

2. The classically forbidden region occurs where the energy is lower than the

2
potential energy. For a hydrogen atom the potential is V' = — ¢ and
(4meg)r
po, e
the ground state energy is Fy = ———(——)* = —13.6eV.
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(a) Classically forbidden region is where:
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(b) The probability of finding an electron in the forbidden region is:

P = / &’ [¢100(1)|?
forbidden region

= / dTT2 / dQ|w100(I‘)|2
2a,

> 1 1
= der/dQ ——)2(—)3 2 a2
/ ()
4 oo
= (—)/ drr?e=2/m
ai 2ay
4 —2r/a r=00
— (a_3) [e7? f(—a,r?)2 — air/2 - ai/ll)}r:%u
m
40 43 3 3
= (é)e (2au+a#+a#/4)
13¢7*
0.24

3. (a) The parity operator acts on the energy eigenstates by (equation 7.149 in
text):

P¢nlm(r) = (—1)l¢an(r) .

Therefore, for the state ¥(r,t = 0) = \/Lﬁ[Q@bloo(r) — 3thago(r) + 1392(r)] we
have:

PU(r,t =0) = U(r,t =0).

So U(r,t = 0) is an eigenstate of parity, with parity eigenvalue +1.

(b) The probabilities are given by:
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P = | < U(r,t =0)> = |—|* =2/7
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Py = | < U(r,t=0)>?=|——[*=9/14
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(c) The expectation values are:

<E> = <VU(r,t=0)|H|¥Y(r,t=0) >
= [(2/7)(1) + (9/14)(1/2°) + 1/14(1/3%)] Ey
= 229F,/504

<L®*> = <VU(r,t=0)|L*¥(r,t =0) >
= [(2/7)(0) + (9/14)(0) + 1/14(2(2 + 1))]A*
= 3n%/7

<L,> = <U(r,t =0)|L.|¥(r,t =0) >
= [(2/7)(0) + (9/14)(0) + 1/14(2))]n
= h/7

4. The silver atoms enter the magnetic field with a velocity in the x direction of

kT
Uy = <W>1/ 2. The velocity in the x-direction does not change so the silver
M
atoms are in the magnetic field for a time t = — = L(%_T)l/ ?. During this
Vg

time they experience a force in the z-direction of F, = M, which means

that the silver atoms acquire a velocity in the z-direction of

Ft LM%
’UZ = — =

M (3KTM)1/2
and travel a distance in the z-direction of
_ LB, 1M
S 2*M 2 3kT
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Before hitting the screen, the atoms then continue traveling for a time /v,
which causes them to travel an additional distance in the z-direction of:
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2o = vl /v, = T

So the total distance traveled in the z-direction is:

LI+ L/2)M. %= LU+ L/ 05,
3T 3kT

= £+3.9cm

Z2=21+ 29 =

which gives a maximum separation of 7.8cm.



5. Parts (a) to (g) are straightforward to derive using basic matrix algebra and
the matrices:

(01 (0 —i (1 0
=10 =i o 2= 0 —1
Part (h) is a little more difficult and can be computed as follows. Note that
by combining the results from parts (a), (b) and (c), we have the relation:

O'iO'j = 5ij + iEijkO'k
This then implies:
(O' . A)(O’ . B) = O'z‘AZ'O'ij
= O'iO'inBj
= (5U + iEiijk)AiBj
= AZBI + iEiijkAiBj
= A-B+ioc- (A xB)



