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The goal of this study entails the development of computational models of in
vitro procedures in order to obtain an enhanced understanding of the mecha-
nisms underlying the response of adherent cells to mechanical stimuli. The well
established phenomenon of cell alignment under conditions of cyclic substrate
stretching is considered. Cell-substrate adhesion is modelled using cohesive
zone formulations. Two-dimensional cohesive zone modelling of cyclic sub-
strate stretching reveals a mechanism of cell debonding associated with the
cyclic accumulation of viscoelastic strain. Cell alignment is investigated for
two distinct modes of cyclic substrate deformation using three-dimensional
cohesive zone modelling. It is found that the alignment of the cell-substrate
contact areas corresponds to directions of cell alignment observed experimen-
tally for both modes (Wang et al. (2001)).

1 Introduction

The in vitro reorientation of isolated cells under conditions of cyclic substrate
stretching is widely reported in the literature; see, for example, Wang et al.
(1995), Takemasa et al. (1998) and Neidlinger-Wilke et al. (2001). Such be-
havior is observed for a variety of cell phenotypes including fibroblasts, human
melanocytes and endothelial cells. Wang et al. (2001) report that under uniax-
ial substrate stretching, where substrate contraction is prohibited, cells were
found to align at 90◦ to the direction of stretching. In cases where lateral
substrate contraction was permitted cells were found to align at 65◦ to the di-
rection of stretching. Both alignment directions correspond to the direction of
minimum substrate strain. However, it is not clear from such in vitro studies
why such cell reorientation occurs. In the current study computational models
are developed in order to elucidate the mechanisms underlying such behavior.
Two cohesive zone models are considered for modeling of cell-substrate adhe-
sion (Beltz and Rice (1991), Xu and Needleman (1993)). Cells are modeled as
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a viscoelastic continuum. Such an approach to cell modeling has been shown
by Leipzig and Athanasiou (2004) to provide better predictions for initial
creep response than the alternative bi-phasic modeling approach. Viscoelastic
properties are fitted to the experimental measurements of Sato et al. (1990)
for porcine endothelial cells.

2 Constitutive Relations

For elasticity, a hyperelastic description is used, where the stress can be de-
rived from a strain energy density potential. A neo-Hookean description is
adopted. In this case the form of the strain energy density potential, U , is

U = C10(Ī1 − 3) +
1

D1
(J − 1)2, Ī1 = λ̄2

1 + λ̄2
2 + λ̄2

3, (1)

where C10 and D1 are material constants and J is the Jacobian of the defor-
mation, J = detF. In the above, the λ̄i are the principal deviatoric stretches,
given by λ̄i = J− 1

3 λi, where λi are the principal stretches of the deforma-
tion, which can be determined directly from the deformation gradient F as
the eigenvalues of FT · F. The neo-Hookean description of hyperelasticity is
chosen since it is a relatively straightforward representation of finite strain
elasticity that can be specified in terms of two material constants C10 and
D1, that can easily be related to the initial or linear isotropic elastic con-
stants, the elastic modulus E and Poisson’s ratio ν. In specific terms, we use
the relationships

C10 =
E

4(1 + ν)
, D1 =

6(1− 2ν)
E

. (2)

The finite strain viscoelasticity used in this work is a generalization of small
strain theory, and the basic formulation is most easily outlined beginning with
the small strain theory. The viscoelastic material model. relates a time-varying
shear strain, γ(t), to shear stress, τ(t), by

τ (t) = G0

t∫
0

gR (t − s) γ̇ (s) ds (3)

where γ̇(t) is the shear strain rate and the shear relaxation modulus, gR(t), is
defined as

gR (t) =
GR (t)

G0
, (4)

G0 = GR(0) being the instantaneous shear modulus and GR(t) the shear
modulus at time t. It is assumed that the shear relaxation modulus is defined
by a Prony series expansion such that

gR (t) = 1−
N∑

i=1

gp
i

(
1− e−t/τG

i

)
, (5)
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where gp
i and τG

i are material constants and N is the number of terms in the
Prony series (ABAQUS/Standard Users Manual, 2002; Hibbitt et al. (2002)).
Equation (4) can be transformed by using integration by parts to yield

τ (t) = G0

⎛⎝γ −
t∫

0

ġR (s) γ (t − s) ds

⎞⎠ = τ0(t)−
t∫

0

ġR (s)τ0 (t − s) ds, (6)

where τ0(t) = G0γ is the instantaneous shear stress at time t. Where volu-
metric deformation of the viscoelastic material is also being considered the
following expression, analogous to eq. (6), is used to define the pressure

p (t) = −K0

⎛⎝ev −
t∫

0

k̇R (s) ev (t − s) ds

⎞⎠ = p0(t) +

t∫
0

k̇R (s)p0 (t − s) ds, (7)

where ev is the volumetric strain, kR is the bulk relaxation modulus, K0 is the
instantaneous bulk modulus and p0(t) is the instantaneous pressure at time t.
As in eq. (5), kR is represented using a Prony series

kR (t) = 1−
N∑

i=1

k
p

i

(
1− e−t/τK

i

)
, (8)

where k
p

i and τK
i are material constants and N is the number of terms in the

Prony series. In ABAQUS it is assumed that τK
i = τG

i .
From this a generalization to finite strains can be made where the small

strain elastic constitutive laws τ0(t) = G0γ and p0(t) = −K0e
v, involving

the infinitesimal stresses τ0(t) and p0(t), can be replaced with an appropriate
finite strain constitutive law and an appropriate finite strain stress measure.
In ABAQUS a generalization based on the expression

τ (t) = τ 0(t)−
t∫

0

ġR (s)F−1
t (t − s)·τD

0 (t − s) · Ft(t − s)ds

−
t∫

0

k̇R (s)F−1
t (t − s)·τH

0 (t − s) · Ft(t − s)ds (9)

with
τ (t) = Jσ(t), τ 0(t) = Jσ0(t) = τD

0 (t) + τH
0 (t) , (10)

is used, where τ (t) is the Kirchhoff stress tensor and τ 0(t) is the instantaneous
or elastic Kirchhoff stress that is decomposed into deviatoric, τD

0 (t), and volu-
metric, τH

0 (t), parts. In eq. (9) the transformation to finite strain necessitates
the introduction of a relative deformation gradient tensor Ft that represents
the deformation from the configuration at time t – s to the configuration at
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time t. In using this constitutive law, the Cauchy stress σ can be recovered by
the determination of τ through eq. (9) and the inversion of eq. (10)1, and in a
similar fashion the instantaneous or elastic Cauchy stress can be determined
by σ0(t) = τ 0(t)/J (Belytschko et al. (2000), Hibbitt et al. (2002)).

Finite strain viscoelasticity as described above is used in this study to
represent the cell material behavior and, as is the case for material elastic-
ity, much experimental work has been performed to determine values for cell
viscoelastic material properties. The cells are therefore represented by both
hyperelasticity and viscoelasticity and as such could be described as hyper-
viscoelastic. The formal linkage between the two constitutive descriptions is
achieved by using hyperelasticity to specify the hyperelastic Cauchy stress at
any time in the deformation history (any time t). This can then be identi-
fied as σ0(t) and inserted into eqs (9) and (10) to determine the final stress
(τ (t) and hence σ(t)) at time t due to both hyperelastic and viscous modes
of deformation.

The cell substrate interface is described using cohesive zone models where
by the energy of separation of two surfaces is expressed as a potential func-
tion, φ(∆), where ∆ is a vector of displacement jumps between the surfaces.
Interface traction-separation relationships can be derived from the potential
whereby

T =
∂φ (∆)

∂∆
, (11)

where T is a vector of interface tractions. Two potential functions are con-
sidered in this study, the Xu-Needleman potential (12) and the Beltz-Rice
potential (13), respectively

φ (∆n,∆t) = φn + φn exp
(
−∆n

δn

)
×
{[

1 +
∆n

δn

]
(q − 1)−

[
q + q

∆n

δn

]
exp
(
−∆2

t

δ2
t

)}
, (12)

φ (∆n,∆t) = φn + φn exp
(
−∆n

δn

)
×
{[

q + q
∆n

δn

]
sin2

(
π∆t

δt

)
−
[
1 +

∆n

δn

]}
, (13)

with

q =
φt

φn
, (14)

where φn is the work of normal separation and φt is the work of tangential
separation, ∆n and ∆t are the normal and tangential displacement jumps,
respectively, across the interface, and δn and δt are normal and tangential
characteristic lengths for the interface. Both cohesive zone models exhibit
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an exponential form of the traction-separation relationship in the normal di-
rection. This is consistent with the form of the force-separation curve mea-
sured for isolated ligand-receptor bonds (Leckband and Israelachvili (2001)).
However, different forms are exhibited in the tangential direction, with the
Xu-Needleman potential again yielding an exponential traction-separation re-
lationship and the Beltz-Rice potential yields a sinusoidal relationship. While
the former probably represents a more realistic representation of the localized
breaking of ligand-receptor bonds in the tangential direction, the latter allows
for cell re-adhesion in regions remote from the original bonding sites. Equa-
tions (13) and (14) can be generalized to three dimensions by the substitution:

∆t =
(
∆2

m + ∆2
s

)1/2
, (15)

where ∆s, ∆m and ∆n form a right-handed set.

3 Finite Element Model

A two-dimensional finite element model of a generic cell and substrate is
shown in Fig. 1. By manipulation of symmetry only half the cell geometry
is modelled. Displacement boundary conditions are applied to the right-hand
side of the substrate such that the substrate strain varies cyclically from 0%
strain to 5% strain at a frequency of 1Hz. The cell material is assumed to be
incompressible with an elastic modulus of 5 kPa, an elastic modulus of 2.5MPa
and a Poisson’s ratio of 0.4 are used to model the silicone substrate. A coarser
mesh is used for the substrate since it is several orders of magnitude stiffer
than the cell and would consequently exhibit very low gradients of strain. A
cell of height 15µm and of contact radius 8.57µm is shown in Fig. 1. However,
several cell heights and contact radii are considered in this study.

Fig. 1. Two-dimensional finite element cell-substrate model. The densely meshed
section represents a cell attached to a coarsely meshed substrate. Cyclic strain is
applied to the right-hand-side of the model in the horizontal direction.
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Fig. 2. Three-dimensional finite element cell-substrate model. The model is shown
with the two planes of symmetry facing forwards.

By rotation of the two-dimensional cell geometry about its axis of symme-
try a generic three-dimensional cell geometry is generated, as shown in Fig. 2.
Again, by manipulation of symmetry only a quarter of the cell is modelled.
Cyclic stretching of the substrate in the 1-direction is accompanied by cyclic
compression of the substrate in the 3-direction due to the Poisson’s effect. This
is referred to as biaxial substrate deformation. Simulations are also performed
in which lateral compression of the substrate is restrained. This is referred to
as uniaxial substrate deformation. Both modes of deformation were used in
the in vitro studies of cell reorientation by Wang et al. (2001).

4 Results

A brief summary of the main findings for two-dimensional and three-
dimensional simulations is presented in this section. Interface strengths in the
range of 500Pa to 1000Pa are used. This corresponds to a range of ligand-
receptor bond strengths of 10 pN to 20 pN assuming a bond density of 50
sites/µm2 (Thoumine et al. (1999)). Characteristic interface lengths of 25 nN
are used in all simulations, based on experimentally measured ligand-receptor
bond lengths.

Simulations are performed using a two-dimensional Xu-Needleman cohe-
sive zone model. Following five cycles a tensile strain concentration develops
above the cell-substrate contact opening as a result of cell viscoelasticity (see
Fig. 3). This has the effect of lifting the cell from the substrate. Following
200 cycles the increasing magnitude of the tensile strain concentration results
in debonding of a large section of the cell from the substrate. An equilibrium
configuration is obtained following 200 cycles with no further debonding being
computed. Quantitatively similar results are computed using the Beltz-Rice
cohesive zone model.

As mentioned above, the cell geometry used is representative of a range of
adherent cell types. Endothelial cells spread on a substrate can have heights
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Fig. 3. Contours of strain component parallel to stretching direction computed
using a two-dimensional Xu-Needleman model. Contour plots of the strain compo-
nent parallel to the direction of substrate stretching are shown following five cycles
and 200 cycles in Figs 3a and 3b respectively, Fig. 3b shows an increased zone of
debonding.

as low as 5µm (Davies et al. (1993)). In order to examine the influence of cell
geometry on the mechanism of cell debonding models of spread cells of height
5µm, with the entire cell base initially in contact with the substrate, are used.
The debonded cell configuration is shown in Fig. 4a and Fig. 4b for cells with
initial contact lengths of 8.5µm and 12µm, respectively. The mechanism of
nodal debonding again entails the accumulation of a tensile strain concentra-
tion above the contact edge. While substantially more debonding occurs for
the cell with a contact length of 12µm the final contact length is very similar
for both cases. However, it should be noted that for higher values of inter-
face strength no debonding occurs for the cell with the lower contact length.
In the case of the cell with a contact length of 12µm a linear dependence
of debonding on the interface strength is computed. In both cases the final
contact length is very similar to that computed for the cell geometry shown
in Fig. 1.

While two-dimensional models are used to investigate the mechanism of
cell debonding, three-dimensional models must be used in order to investigate
alignment of the cell substrate contact area. Strain contours for the case of
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Fig. 4. Strain contours plotted on debonded cell geometry for cells of height 5µm
and radii of 8.5µm (see Fig. 4a) and 12µm (see Fig. 4b).

biaxial substrate deformation, where lateral contraction of the substrate due
to the Poisson’s effect occurs, are shown in Fig. 5. Contours of the strain
component in the direction of substrate stretching are in Fig. 5a. As was re-
vealed by two-dimensional models, the accumulation of tensile strain above
the contact edge results in cell debonding in the direction of substrate stretch-
ing. Contours of the strain component in the direction of substrate contraction
(Fig. 5b) reveal that a compressive strain accumulates above the contact edge,
resulting in an upwards buckling of the cell. This leads to a small amount of
cell debonding in the direction of substrate compression in the case of biaxial
substrate deformation. In the case of uniaxial substrate deformation, where
no lateral substrate deformation occurs, such an accumulation of compressive
strain does not occur, with debonding being computed only in the direction
of substrate stretching. The resultant contact areas for the case of biaxial
and uniaxial substrate deformation are shown in Fig. 6a and Fig. 6b, respec-
tively. Debonding in the compressive direction in the former case results in an
alignment of the contact at 65◦ to the direction of stretching. In the case of
uniaxial deformation, the contact area aligns perpendicular to the direction of
substrate stretching. This complies with the directions of cell orientation ob-
served in vitro by Wang et al. (2001) for such modes of substrate deformation.
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Fig. 5. Strain components in the direction of substrate stretching (see Fig. 5a), and
substrate contraction (see Fig. 5b) for biaxial substrate deformation.

Fig. 6. Final cell-substrate contact areas: uniaxial substrate deformation (see
Fig. 6a); biaxial substrate deformation (see Fig. 6b).

5 Discussion

A mechanism of cell debonding under cyclic substrate stretching where the
accumulation of tensile strains due to cell viscoelasticity results in a lifting
of the cell from the substrate is revealed by the computational models. The
mechanism is shown to apply to a range of cell geometries. Development of
compressive strain concentrations under biaxial substrate stretching results in
a contact area alignment at 65◦ to the direction of stretching. The absence of
such compressive strains in the case of uniaxial substrate stretching results in
an alignment of the contact area perpendicular to the direction of stretching.
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This complies with the directions of cell orientation observed in vitro by Wang
et al. (2001) for such modes of substrate deformation. It should be noted that
no significant alignment of the cell shape is computed by the computational
models. This suggests that the computed breaking of cell-substrate adhesions
acts as an initial step in the process of cell alignment. The associated unan-
choring and subsequent rearrangement of the cell cytoskeleton has been shown
to occur during cell alignment (Wang (2000)).
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